Nitric oxide and peroxynitrite in health and disease.
نویسندگان
چکیده
The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.
منابع مشابه
O-8: Study of Peroxynitrite Levels, Arginase Activity and NO Synthase Activity in Seminal Plasma of Iraqi Leukocytospermic Patients
Background Leukocytes linked directly and indirectly to reactive oxygen species (ROS) formation. Although leukocytospermia is defined as the presence of ≥1×106 white blood cells/mL (WBC/mL) in a semen sample, the presence of less than 1×106 WBC/mL (low-level leukocytospermia) still can produce a detectable amount of ROS, impairing sperm function and lowering the chances of pregnancy. Low concen...
متن کاملNephrotoxicity of Isosorbide Dinitrate and Cholestasis in Rat: The Possible Role of Nitric Oxide
Background: Nitric oxide (NO), a major chemical form of endothelium-derived relaxing factor and an important regulator of vascular tone, is released by endothelial cells. The role of NO is not restricted to the vascular system, and it participates in the regulation of renal hemodynamics and renal excretory function. There are increasing evidences indicating that the elevated levels of NO play a...
متن کاملInvolvement of Cytochrome P-450 in n-Butyl Nitrite-Induced Hepatocyte Cytotoxicity
Addition of n-butyl nitrite to isolated rat hepatocytes caused an immediate glutathione depletion followed by an inhibition of mitochondrial respiration, inhi- bition of glycolysis and ATP depletion. At cytotoxic butyl nitrite concentrations, lipid peroxidation occurred before the plasma membrane was disrupted. Cytochrome P-450 inhibitors inhibited peroxynitrite formation and prev...
متن کاملElevated nitric oxide/peroxynitrite theory of multiple chemical sensitivity: central role of N-methyl-D-aspartate receptors in the sensitivity mechanism.
The elevated nitric oxide/peroxynitrite and the neural sensitization theories of multiple chemical sensitivity (MCS) are extended here to propose a central mechanism for the exquisite sensitivity to organic solvents apparently induced by previous chemical exposure in MCS. This mechanism is centered on the activation of N-methyl-D-aspartate (NMDA) receptors by organic solvents producing elevated...
متن کاملNitric oxide modulates superoxide release and peroxynitrite formation in human blood vessels.
Nitric oxide and superoxide have important roles as vascular signaling molecules. Nitric oxide (NO) reacts rapidly with superoxide, producing peroxynitrite. The relative balance between these radicals has important implications for vascular pathophysiology in hypertension and other vascular disease states. However, the relationships between superoxide, NO, and peroxynitrite formation in human b...
متن کاملThe cardiovascular effects and implications of peroxynitrite.
Nitric oxide is an endogenous autacoid produced primarily by the vascular endothelium. Under basal conditions, nitric oxide undergoes a rapid biradical reaction with superoxide anions to form peroxynitrite. This reaction, and hence the formation of peroxynitrite is augmented in inflammatory-like conditions such as ischemia-reperfusion injury when both substrates are present in high concentratio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological reviews
دوره 87 1 شماره
صفحات -
تاریخ انتشار 2007